NCERT SOLUTIONS FOR CLASS 11 MATHS CHAPTER 4 / PRINCIPLE OF MATHEMATICAL INDUCTION EXERCISE – 4.1 /

Prove the following by using the principle of mathematical induction for aline n ∈ N :

Question 1.

1+{ 3 }^{ 2 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ 3 }^{ n }=\frac { \left( { 3 }^{ n }-1 \right) }{ 2 }

Solution.

Let the given statement be P(n) i.e.,

P(n) : 1+{ 3 }^{ 2 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ 3 }^{ n }=\frac { \left( { 3 }^{ n }-1 \right) }{ 2 }

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 1
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 2

Question 2.

{ 1 }^{ 3 }+{ 2 }^{ 3 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n }^{ 3 }={ \left( \frac { n\left( n+1 \right) }{ 2 } \right) }^{ 2 }

Solution.

Let the given statement be P(n) i.e.,

P(n) : { 1 }^{ 3 }+{ 2 }^{ 3 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n }^{ 3 }={ \left( \frac { n\left( n+1 \right) }{ 2 } \right) }^{ 2 }

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 3
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 4

Question 3.

1+\frac { 1 }{ \left( 1+2 \right) } +\frac { 1 }{ \left( 1+2+3 \right) } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 1+2+3+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n \right) } =\frac { 2 }{ \left( n+1 \right) }

Solution.

Let the given statement be P(n), i.e.,

P(n) : 1+\frac { 1 }{ \left( 1+2 \right) } +\frac { 1 }{ \left( 1+2+3 \right) } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 1+2+3+.\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n \right) } =\frac { 2 }{ \left( n+1 \right) }

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 5
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 6

Question 4.

1.2.3+2.3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n\left( n+1 \right) \left( n+2 \right) =\frac { n\left( n+1 \right) \left( n+2 \right) \left( n+3 \right) }{ 4 }

Solution.

Let the given statement be P(n), i.e.,

P(n) : 1.2.3+2.3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n\left( n+1 \right) \left( n+2 \right) =\frac { n\left( n+1 \right) \left( n+2 \right) \left( n+3 \right) }{ 4 }

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 7
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 8

Question 5.

1.3+{ 2.3 }^{ 2 }+{ 3.3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n.3 }^{ n }=\frac { \left( 2n-1 \right) { 3 }^{ n+1 }+3 }{ 4 }

Solution.

Let the given statement be P(n), i.e.,

P(n) : 1.3+{ 2.3 }^{ 2 }+{ 3.3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n.3 }^{ n }=\frac { \left( 2n-1 \right) { 3 }^{ n+1 }+3 }{ 4 }

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 9
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 10

Question 6.

1.2+2.3+3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.\left( n+1 \right) =\left[ \frac { n\left( n+1 \right) \left( n+2 \right) }{ 3 } \right]

Solution.

Let the given statement be P(n), i.e.,

P(n) : 1.2+2.3+3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.\left( n+1 \right) =\left[ \frac { n\left( n+1 \right) \left( n+2 \right) }{ 3 } \right]

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 11
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 12

Question 7.

1.3+3.5+5.7+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\left( 2n-1 \right) \left( 2n+1 \right) =\frac { n\left( { 4n }^{ 2 }+6n-1 \right) }{ 3 }

Solution.

Let the given statement be P(n), i.e.,

P(n) : 1.3+3.5+5.7+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\left( 2n-1 \right) \left( 2n+1 \right) =\frac { n\left( { 4n }^{ 2 }+6n-1 \right) }{ 3 }

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 13
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 14
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 15

Question 8.

1.2+2.{ 2 }^{ 2 }+3.{ 2 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.{ 2 }^{ n }=\left( n-1 \right) { 2 }^{ n+1 }+2

Solution.

Let the given statement be P(n), i.e.,

P(n) : 1.2+2.{ 2 }^{ 2 }+3.{ 2 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.{ 2 }^{ n }=\left( n-1 \right) { 2 }^{ n+1 }+2

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 16

Question 9

\frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 8 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ { 2 }^{ n } } =1-\frac { 1 }{ { 2 }^{ n } }

Solution.

Let the given statement be P(n), i.e.,

P(n) : \frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 8 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ { 2 }^{ n } } =1-\frac { 1 }{ { 2 }^{ n } }

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 17
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 18

Question 10.

\frac { 1 }{ 2.5 } +\frac { 1 }{ 5.8 } +\frac { 1 }{ 8.11 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-1 \right) \left( 3n+2 \right) } =\frac { n }{ \left( 6n+4 \right) }

Solution.

Let the given statement be P(n), i.e.,

P(n) : \frac { 1 }{ 2.5 } +\frac { 1 }{ 5.8 } +\frac { 1 }{ 8.11 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-1 \right) \left( 3n+2 \right) } =\frac { n }{ \left( 6n+4 \right) }

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 19
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 20

Question 11.

\frac { 1 }{ 1.2.3 } +\frac { 1 }{ 2.3.4 } +\frac { 1 }{ 3.4.5 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ n\left( n+1 \right) \left( n+2 \right) } =\frac { n\left( n+3 \right) }{ 4\left( n+1 \right) \left( n+2 \right) }

Solution.

Let the given statement be P(n), i.e.,

P(n) : \frac { 1 }{ 1.2.3 } +\frac { 1 }{ 2.3.4 } +\frac { 1 }{ 3.4.5 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ n\left( n+1 \right) \left( n+2 \right) } =\frac { n\left( n+3 \right) }{ 4\left( n+1 \right) \left( n+2 \right) }

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 21
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 22
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 23

Question 12.

a+ar+{ ar }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ ar }^{ n-1 }=\frac { a\left( { r }^{ n }-1 \right) }{ r-1 }

Solution.

Let the given statement be P(n), i.e.,

P(n) : a+ar+{ ar }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ ar }^{ n-1 }=\frac { a\left( { r }^{ n }-1 \right) }{ r-1 }

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 24
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 25

Question 13.

\left( 1+\frac { 3 }{ 1 } \right) \left( 1+\frac { 5 }{ 4 } \right) \left( 1+\frac { 7 }{ 9 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { \left( 2n+1 \right) }{ { n }^{ 2 } } \right) ={ \left( n+1 \right) }^{ 2 }

Solution.

Let the given statement be P(n), i.e.,

P(n) : \left( 1+\frac { 3 }{ 1 } \right) \left( 1+\frac { 5 }{ 4 } \right) \left( 1+\frac { 7 }{ 9 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { \left( 2n+1 \right) }{ { n }^{ 2 } } \right) ={ \left( n+1 \right) }^{ 2 }

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 26
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 27

Question 14.

\left( 1+\frac { 1 }{ 1 } \right) \left( 1+\frac { 1 }{ 2 } \right) \left( 1+\frac { 1 }{ 3 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { 1 }{ n } \right) =\left( n+1 \right)

Solution.

Let the given statement be P(n), i.e.,

P(n) : \left( 1+\frac { 1 }{ 1 } \right) \left( 1+\frac { 1 }{ 2 } \right) \left( 1+\frac { 1 }{ 3 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { 1 }{ n } \right) =\left( n+1 \right)

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 28
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 29

Question 15.

{ 1 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ \left( 2n-1 \right) }^{ 2 }=\frac { n\left( 2n-1 \right) \left( 2n+1 \right) }{ 3 }

Solution.

Let the given statement be P(n), i.e.,

P(n) : { 1 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ \left( 2n-1 \right) }^{ 2 }=\frac { n\left( 2n-1 \right) \left( 2n+1 \right) }{ 3 }

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 30
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 31

Question 16.

\frac { 1 }{ 1.4 } +\frac { 1 }{ 4.7 } +\frac { 1 }{ 7.10 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-2 \right) \left( 3n+1 \right) } =\frac { n }{ \left( 3n+1 \right) }

Solution.

Let the given statement be P(n), i.e.,

P(n) : \frac { 1 }{ 1.4 } +\frac { 1 }{ 4.7 } +\frac { 1 }{ 7.10 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-2 \right) \left( 3n+1 \right) } =\frac { n }{ \left( 3n+1 \right) }

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 32
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 33

Question 17.

\frac { 1 }{ 3.5 } +\frac { 1 }{ 5.7 } +\frac { 1 }{ 7.9 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 2n+1 \right) \left( 2n+3 \right) } =\frac { n }{ 3\left( 2n+3 \right) }

Solution.

Let the given statement be P(n), i.e.,

P(n) : \frac { 1 }{ 3.5 } +\frac { 1 }{ 5.7 } +\frac { 1 }{ 7.9 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 2n+1 \right) \left( 2n+3 \right) } =\frac { n }{ 3\left( 2n+3 \right) }

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 34
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 35

Question 18.

1+2+3+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n<\frac { 1 }{ 8 } { \left( 2n+1 \right) }^{ 2 }

Solution.

Let the given statement be P(n), i.e.,

P(n) : 1+2+3+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n<\frac { 1 }{ 8 } { \left( 2n+1 \right) }^{ 2 }

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 36
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 37

Question 19. n(n+1 )(n + 5) is a multiple of 3.

Solution.

Let the given statement be P(n), i.e.,

P(n): n(n + l)(n + 5) is a multiple of 3.

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 38
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 39

Question 20.

{ 10 }^{ 2n-1 }+1 is divisible by 11.

Solution.

Let the given statement be P(n), i.e.,

P(n): { 10 }^{ 2n-1 }+1 is divisible by 11

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 40

Question 21.

{ x }^{ 2n }-{ y }^{ 2n } is divisible by x + y.

Solution.

Let the given statement be P(n), i.e.,

P(n): { x }^{ 2n }-{ y }^{ 2n } is divisible by x + y.

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 41

Question 22.

{ 3 }^{ 2n+2 }-8n-9 is divisible by 8.

Solution.

Let the given statement be P(n), i.e.,

P(n): { 3 }^{ 2n+2 }-8n-9 is divisible by 8.

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 42

Question 23.

{ 41 }^{ n }-{ 14 }^{ n } is a multiple of 27.

Solution.

Let the given statement be P(n), i.e.,

P(n): { 41 }^{ n }-{ 14 }^{ n } is a multiple of 27.

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 43

Question 24.

\left( 2n+7 \right) <{ \left( n+3 \right) }^{ 2 }

Solution.

Let the given statement be P(n), i.e.,

P(n): \left( 2n+7 \right) <{ \left( n+3 \right) }^{ 2 }

First, we prove that the statement is true for n = 1.

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 44